COMPUTING
SCIENCE

Abstracting Asynchronous Multi-Valued Networks: An Initial Investigation

L. Jason Steggle
Abstracting Asynchronous Multi-Valued Networks: An Initial Investigation

L. J Steggles

Abstract

Multi-valued networks provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of multi-valued networks. We take as our starting point the abstraction theory for synchronous multi-valued networks which is based on the finite set of traces that represent the behaviour of such a model. The problem with extending this approach to the asynchronous case is that we can now have an infinite set of traces associated with a model making a simple trace inclusion test infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous multi-valued network to reason about its trace semantics. We illustrate the abstraction techniques developed by considering a detailed case study based on a multi-valued network model of the regulation of tryptophan biosynthesis in Escherichia coli.
Multi-valued networks provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of multi-valued networks. We take as our starting point the abstraction theory for synchronous multi-valued networks which is based on the finite set of traces that represent the behaviour of such a model. The problem with extending this approach to the asynchronous case is that we can now have an infinite set of traces associated with a model making a simple trace inclusion test infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous multi-valued network to reason about its trace semantics. We illustrate the abstraction techniques developed by considering a detailed case study based on a multi-valued network model of the regulation of tryptophan biosynthesis in Escherichia coli.

About the authors

Dr L. Jason Steggles is a lecturer in the School of Computing Science, University of Newcastle. His research interests lie in the use of formal techniques to develop correct computing systems. In particular, he has worked extensively on using algebraic methods for specifying, prototyping and validating computing systems.

Suggested keywords

ABSTRACTION THEORY
QUALITATIVE BIOLOGICAL MODELS
MULTI-VALUED NETWORKS
GENETIC REGULATORY NETWORKS
Abstracting Asynchronous Multi-Valued Networks: An Initial Investigation

L. Jason Steggles
School of Computing Science, University of Newcastle, UK.
email: L.J.Steggles@newcastle.ac.uk

Abstract

Multi-valued networks provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of multi-valued networks. We take as our starting point the abstraction theory for synchronous multi-valued networks which is based on the finite set of traces that represent the behaviour of such a model. The problem with extending this approach to the asynchronous case is that we can now have an infinite set of traces associated with a model making a simple trace inclusion test infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous multi-valued network to reason about its trace semantics. We illustrate the abstraction techniques developed by considering a detailed case study based on a multi-valued network model of the regulation of tryptophan biosynthesis in *Escherichia coli*.

1 Introduction

Multi-valued networks (MVNs) [25, 34, 35] are an expressive qualitative modelling approach for biological systems (for example, see [35, 7, 28, 3]). They extend the well–known Boolean network [17, 18] approach by allowing the state of each regulatory entity to be within a range of discrete values instead of just true or false. The state of each regulatory entity is influenced by other regulatory entities in the MVN and entities update their state using either a synchronous update strategy [18, 39] where all entities simultaneously update their state, or an asynchronous update strategy [33, 15, 36] where entities update their state independently using a non-deterministic approach.

While MVNs have shown their usefulness for modelling and understanding biological systems further work is still needed to strengthen the techniques and tools available for MVNs. One interesting area that needs developing is a theory for abstracting MVNs. Abstraction techniques allow a simpler model to be identified which can then be used to provide insight into the more complex original model. Such techniques are well–known in the formal verification community as a means of coping with the complexity of formal models (see for example [9, 6, 10, 13]). The main motivation behind developing such a theory for MVNs can be summarised as follows:

1. The analysis of MVNs is limited by the well–known problem of state space explosion. Using abstraction is one useful approach which allows analysis results from a simpler approximate model to infer results about the original model.
2. Often several MVNs are defined at different levels of abstraction when modelling a system.
It is therefore clearly important to be able to formally relate these models using an appropriate theory.

(3) An abstraction theory would provide a basis for the step-wise refinement of MVNs.

(4) Identifying an abstraction for a complex MVN provides a means of better visualising and understanding the behaviour an MVN, giving greater insight into the system being modelled.

The abstraction theory we present for asynchronous MVNs is based on extending the synchronous abstraction theory presented in [5]. We formulate a notion of what it means for an MVN to be correctly abstracted by a simpler MVN with the same network structure but smaller state space. The idea is to use an abstraction mapping to relate the reduced state space of an abstraction to the original MVN. An abstraction is then said to be correct if its set of traces is within the abstracted traces of the original MVN. This definition of abstraction represents an under-approximation [9, 24] since not all of the behaviour of the original MVN is guaranteed to have been captured within the abstraction. We show that this approach allows sound analysis inferences about positive reachability properties in the sense that any reachability result shown on an abstraction must hold on the original model. An important result of this is that it therefore follows that all attractors of an asynchronous abstraction correspond to attractors in the original MVN. Note that an alternative approach commonly used in abstraction is to use an over-approximation [9, 24, 10] in which false positives may occur. However, such an approach appears to be problematic for MVNs and we discuss this further in Section 3.

The non-deterministic nature of asynchronous MVNs mean that we encounter additional complications compared to the synchronous case; an asynchronous MVN can have an infinite set of traces which means that directly checking trace inclusion to check a proposed abstraction is infeasible. We overcome these difficulties by constructing a decision procedure for checking asynchronous abstractions that is based on the underlying finite state graph of an MVN. We introduce the idea of step terms which are used to denote possible ways to use sets of concrete states to represent abstract states. The decision procedure starts with the set of all possible step terms and then iteratively prunes the set until either a consistent abstract representation has been found or the set of remaining step terms is too small to make it feasible to continue. We provide a detailed proof that shows the decision procedure correctly identifies asynchronous abstractions and discuss the complexity of the decision procedure.

We illustrate the abstraction theory we develop by considering a case study based on modelling the regulatory network that controls the biosynthesis of tryptophan by the bacteria *E. coli* [29, 27]. Tryptophan is essential for the development of *E. coli* and its resource intensive synthesis is carefully controlled to ensure its production only occurs when an external source is not available. We investigate identifying asynchronous abstractions for an existing MVN model of this regulatory mechanism which was developed in [30].

The paper is organized as follows. In Section 2 we provide a brief overview of the MVN modelling framework and present a simple illustrative example. In Section 3 we formulate a notion of abstraction for asynchronous MVNs and consider the analysis properties that can be inferred from an abstraction. In Section 4 we present a decision procedure for checking asynchronous abstractions and provide a detailed proof of correctness for this procedure. In Section 5 we illustrate the theory and techniques developed by a case study based on modelling the regulatory network that controls the biosynthesis of tryptophan by *E. coli*. Finally, in Section 6 we present some concluding remarks and discuss related work.
In this section, we introduce multi-valued networks (MVNs) [25, 34, 35], a qualitative modelling approach which extends the well-known Boolean network [17, 18] approach by allowing the state of each regulatory entity to be within a range of discrete values. MVNs can therefore discriminate between the strengths of different activated interactions, something which Boolean networks are unable to capture. MVNs have been extensively studied in circuit design (for example, see [25, 20]) and successfully applied to modelling biological systems (for example, see [35, 7, 28, 3]).

An MVN consists of a set of logically linked entities $G = \{g_1, \ldots, g_k\}$ which regulate each other in a positive or negative way. Each entity g_i in an MVN has an associated set of discrete states $Y(g_i) = \{0, \ldots, m_i\}$, for some $m_i \geq 1$, from which its current state is taken. Note that a Boolean network is therefore simply an MVN in which each entity g_i has a Boolean set of states $Y(g_i) = \{0, 1\}$.

We can define an MVN more formally as follows.

Definition 1. An MVN MV is a four-tuple $MV = (G, Y, N, F)$ where:

i) $G = \{g_1, \ldots, g_k\}$ is a non-empty, finite set of entities;

ii) $Y = (Y(g_1), \ldots, Y(g_k))$ is a tuple of state sets, where each $Y(g_i) = \{0, \ldots, m_i\}$, for some $m_i \geq 1$, is the state space for entity g_i;

iii) $N = (N(g_1), \ldots, N(g_k))$ is a tuple of neighbourhoods, such that $N(g_i) \subseteq G$ is the neighbourhood of g_i; and

iv) $F = (f_{g_1}, \ldots, f_{g_k})$ is a tuple of next-state multi-valued functions, such that if $N(g_i) = \{g_{i_1}, \ldots, g_{i_n}\}$ then the function $f_{g_i} : Y(g_{i_1}) \times \cdots \times Y(g_{i_n}) \rightarrow Y(g_i)$ defines the next state of g_i.

Consider the following simple example $PL2$ of an MVN defined in Figure 1 which models the core regulatory mechanism for the lysis-lysogeny switch [34, 23] in the bacteriophage λ (this model is taken from [32]). It consists of two entities CI and Cro, defined such that $Y(CI) = \{0, 1\}$ and $Y(Cro) = \{0, 1, 2\}$. The next-state functions for each entity are defined using the state transition tables presented in Figure 1.(b) (where $[g_i]$ is used to denote the next state of entity g_i). We can summarise the interactions as follows: entity Cro inhibits the expression of CI and at higher
levels of expression, also inhibits itself; entity CI inhibits the expression of Cro while promoting its own expression.

In the sequel, let $MV = (G, Y, N, F)$ be an arbitrary MVN. In a slight abuse of notation we let $g_i \in MV$ represent that $g_i \in G$ is an entity in MV.

A global state of an MVN MV with k entities is represented by a tuple of states (s_1, \ldots, s_k), where $s_i \in Y(g_i)$ represents the state of entity $g_i \in MV$. As a notational convenience we often use $s_1 \ldots s_k$ to represent a global state (s_1, \ldots, s_k). When the current state of an MVN is clear from the context we let g_i denote both the name of an entity and its corresponding current state. The global state space of an MVN MV, denoted S_{MV}, is the set of all possible global states $S_{MV} = Y(g_1) \times \cdots \times Y(g_k)$.

The state of an MVN can be updated either synchronously (see [18, 39]), where the state of all entities is updated simultaneously in a single update step, or asynchronously¹ (see [33, 15]), where entities update their state independently. We define these update strategies more formally as follows:

Definition 2.

1) **Synchronous Update:** Given two states $S_1, S_2 \in S_{MV}$, we let $S_1 \xrightarrow{\text{Syn}} S_2$ represent a synchronous update step such that S_2 is the state that results from simultaneously updating the state of each entity g_i using its next-state function f_{g_i} and the appropriate states from S_1 as indicated by the neighbourhood $N(g_i)$.

2) **Asynchronous Update:** For any $g_i \in MV$ and any state $S \in S_{MV}$ we let $[S]^{g_i}$ denote the global state that results by updating the state of g_i in S using f_{g_i}. Define the global state function $\text{next}^{MV} : S_{MV} \rightarrow \mathcal{P}(S_{MV})$ on any state $S \in S_{MV}$ by

$$\text{next}^{MV}(S) = \{[S]^{g_i} \mid g_i \in MV \text{ and } [S]^{g_i} \neq S\}$$

Given a state $S_1 \in S_{MV}$ and $S_2 \in \text{next}^{MV}(S_1)$, we let $S_1 \xrightarrow{\text{Asy}} S_2$ represent an asynchronous update step. \hfill \Box

Note that given the above definition, only asynchronous update steps that result in a change in the current state are considered (see [15]).

Continuing with our example, consider the global state 12 for $PL2$ (see Figure 1) in which CI has state 1 and Cro has state 2. Then $12 \xrightarrow{\text{Syn}} 01$ is a single synchronous update step on this state resulting in the new state 11. Considering an asynchronous update, we have $\text{next}^{MV}(12) = \{02, 11\}$ and $12 \xrightarrow{\text{Asy}} 02$ and $12 \xrightarrow{\text{Asy}} 11$ are valid asynchronous update steps.

The sequence of update steps from an initial global state through S_{MV} is called a trace. In the case of the synchronous update semantics such traces are deterministic and infinite. Given that the global state space is finite, this implies that a synchronous trace must eventually enter a cycle, known formally as an attractor cycle [18, 35].

Definition 3. A synchronous trace σ is a list of global states $\sigma = \langle S_0, S_1, S_2, \ldots \rangle$, where $S_i \xrightarrow{\text{Syn}} S_{i+1}$, for $i \geq 0$. \hfill \Box

The set of all synchronous traces, denoted $\mathcal{T}^{S}(MV)$, therefore completely characterizes the behaviour of an MVN model under the synchronous semantics and is referred to as the synchronous

¹Note that different variations of the asynchronous semantics have been considered in the literature (see for example [26]) but that we focus on the one most commonly used for MVNs.
trace semantics of MV. Note that we have one synchronous trace for each possible initial state and so the set of synchronous traces is always finite (see [18, 39]).

In the asynchronous case, traces are non-deterministic and can be finite or infinite. A single initial state can have an infinite number of possible asynchronous traces starting from it and thus in the asynchronous case there can be infinite number of traces.

Definition 4. An asynchronous trace σ is either:

i) a finite sequence of global states $\sigma = \langle S_0, S_1, \ldots, S_n \rangle$, where $S_i \xrightarrow{Asy} S_{i+1}$, for $i = 0, \ldots, n - 1$, and $\text{next}^{MV}(S_n) = \{\}$.

ii) an infinite sequence of global states $\sigma = \langle S_0, S_1, S_2, \ldots \rangle$, where $S_i \xrightarrow{Asy} S_{i+1}$, for $i \geq 0$.

The set of all asynchronous traces, denoted $T_{rA}(MV)$, therefore completely characterizes the behaviour of an MVN model under the asynchronous semantics and is referred to as the asynchronous trace semantics of MV. Any state $S \in S_{MV}$ which cannot be asynchronously updated, i.e. $\text{next}^{MV}(S) = \{\}$, is referred to as a point attractor [34].

In our running example, PL2 has a state space of size $|S_{PL2}| = 6$ and has the following (finite in this case) set of asynchronous traces:

$\{00, 01, 02, 01, 02, \ldots\}$ $\{11, 01, 02, 01, 02, \ldots\}$

$\langle 00, 10 \rangle$ $\langle 11, 10 \rangle$

$\langle 01, 02, 01, 02, \ldots\rangle$ $\langle 12, 02, 01, 02, \ldots\rangle$

$\langle 02, 01, 02, \ldots\rangle$ $\langle 12, 11, 01, 02, \ldots\rangle$

$\langle 10 \rangle$ $\langle 12, 11, 10 \rangle$

From the above traces it is clear that state 10 is a point attractor for PL2.

The behaviour of an MVN under the synchronous or asynchronous trace semantics can be represented by a state graph (for example, see [36]) in which the nodes are the global states and the edges are precisely the update steps allowed. We let $SG^S(MV) = (S_{MV}, \xrightarrow{Syn})$ and $SG^A(MV) = (S_{MV}, \xrightarrow{Asy})$ denote the corresponding state graphs under the synchronous and asynchronous trace semantics.

The synchronous and asynchronous state graphs for PL2 are presented in Figure 2.

When analysing the behaviour of an MVN it is important to consider its attractors which can represent important biological phenomena, such as different cellular types like proliferation, apoptosis and differentiation [16]. In the synchronous case all traces are infinite and so must lead to a cyclic sequence of states which are taken as an attractor [18, 35, 39]. As an example, consider PL2 (see Figure 2.(a)) which has the point attractor $10 \rightarrow 10$; and attractors $00 \xrightarrow{Syn} 11 \xrightarrow{Syn} 00$.

![Figure 2: The (a) synchronous and (b) asynchronous state graphs for PL2.](image-url)
and 01 $\xrightarrow{\text{Syn}}$ 02 $\xrightarrow{\text{Syn}}$ 01 of period 2. In the asynchronous case we have point attractors which are states that cannot be updated and also the strongly connected components in an MVN’s asynchronous state graph are considered to be attractors [36]. Again, considering $PL2$ (see Figure 2.(b)) we can see that in the asynchronous case it has a point attractor 10 and an attractor 01 $\xrightarrow{\text{Asy}}$ 02 $\xrightarrow{\text{Asy}}$ 01.

3 Asynchronous Abstractions

In this section we consider developing a notion of abstraction for asynchronous MVNs. The idea is to formulate what it means for an MVN to be correctly abstracted by a simpler MVN with the same network structure but smaller state space. We take as our starting point the abstraction techniques developed for synchronous MVNs [5] and investigate extending these to the asynchronous case. We show that our approach allows sound analysis inferences about positive reachability properties and that all attractors of an asynchronous abstraction correspond to attractors in the original MVN.

We begin by recalling the notion of a state mapping and abstraction mapping [5] used to reduce an entity’s state space.

Definition 5. Let MV be an MVN and let $g_i \in MV$ be an entity such that $Y(g_i) = \{0, \ldots, m\}$ for some $m > 1$. Then a state mapping $\phi(g_i)$ for entity g_i is a surjective mapping $\phi(g_i) : \{0, \ldots, m\} \rightarrow \{0, \ldots, n\}$, where $0 < n < m$. □

The state mapping must be surjective to ensure that all states in the new reduced state space are used. From a biological viewpoint it may also be reasonable to further restrict the state mappings considered, for example, only considering those mappings which are order-preserving. Note we only consider state mappings with a codomain larger than one, since a singular state entity does not appear to be of biological interest.

As an example, consider entity $Cro \in PL2$ (see Figure 1) which has the state space $Y(Cro) = \{0, 1, 2\}$. It is only meaningful to simplify Cro to a Boolean entity and so one possible state mapping to achieve this would be:

$$\phi(Cro) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\},$$

which maps state 0 to 0 and merges states 1 and 2 into a single state 1.

In order to be able to simplify several entities at the same time during the abstraction process we introduce the notion of a family of state mappings.

Definition 6. Let $MV = (G, Y, N, F)$ be an MVN with entities $G = \{g_1, \ldots, g_k\}$. Then an abstraction mapping $\phi = \langle \phi(g_1), \ldots, \phi(g_k) \rangle$ for MV is a family of mappings such that for each $1 \leq i \leq k$ we have $\phi(g_i)$ is either a state mapping for entity g_i or is the identity mapping $I_{g_i} : Y(g_i) \rightarrow Y(g_i)$ where $I_{g_i}(s) = s$, for all $s \in Y(g_i)$. Furthermore, for ϕ to be useful we normally insist that at least one of the mappings $\phi(g_i)$ is a state mapping. □

Note in the sequel given a state mapping $\phi(g_i)$ we let it denote both itself and the corresponding abstraction mapping containing only the single state mapping $\phi(g_i)$.

An abstraction mapping ϕ can be used to abstract an asynchronous trace (see Definition 4) using a similar approach to that detailed for synchronous traces [5]. We begin by defining how an abstraction mapping can be lifted to a global state.
Definition 7. Let $\phi = \langle \phi(g_1) \ldots \phi(g_k) \rangle$ be an abstraction mapping for MV. Then ϕ can be used to abstract a global state $s_1 \ldots s_k \in S_{MV}$ by applying it pointwise, i.e. $\phi(s_1 \ldots s_k) = \phi(g_1)(s_1) \ldots \phi(g_k)(s_k)$.

We can apply an abstraction mapping ϕ to an asynchronous trace $\sigma \in Tr^A(MV)$ by applying ϕ to each global state in the trace in the obvious way and then merging consecutive identical states. Note that removing consecutive identical states is needed since by the definition of an asynchronous trace (see Definition 4) each asynchronous update rule must result in a new global state, i.e. the state of an entity has to change in order for a state transition to occur.

Definition 8. Let $\phi = \langle \phi(g_1) \ldots \phi(g_k) \rangle$ be an abstraction mapping for MV and let $\sigma \in Tr^A(MV)$ be either a finite $\sigma = \langle S_0, S_1, \ldots, S_n \rangle$ or infinite $\sigma = \langle S_0, S_1, S_2, \ldots \rangle$ asynchronous trace. Then $\phi(\sigma)$ is the abstracted trace that results by

i) First apply the abstraction mapping to each global state in the trace σ, i.e. in the finite case $\langle \phi(S_0), \phi(S_1), \ldots, \phi(S_n) \rangle$ or in the infinite case $\langle \phi(S_0), \phi(S_1), \phi(S_2), \ldots \rangle$.

ii) Next merge consecutive identical global states in the trace into a single global state to ensure that no two consecutive states are identical in the resulting abstracted trace, i.e. suppose the result is an infinite trace $\langle \phi(S_0), \phi(S_1), \phi(S_2), \ldots \rangle$ then we know that for $i \in \mathbb{N}$ we have $\phi(S_i) \neq \phi(S_{i+1})$.

We let $\phi(Tr^A(MV)) = \{\phi(\sigma) \mid \sigma \in Tr^A(MV)\}$ denote the set of abstracted traces.

As an example, consider applying the abstraction mapping $\phi(Cro) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\}$ to the $PL2$ asynchronous trace $(00, 01, 02, 01, 02, \ldots)$. Part i) of Definition 8 above results in the trace $(00, 01, 01, 01, 01, \ldots)$; we now merge identical consecutive states to derive the abstracted trace $(00, 01)$. It is interesting to note that abstracting an infinite trace can result in a finite abstracted trace, as above. The intuition here is that a cyclic set of states have been abstracted to a single point. The complete set of abstracted asynchronous traces of $PL2$ using $\phi(Cro)$ are given below:

$$
\begin{align*}
\phi(Cro)((00, 01, 02, 01, 02, \ldots)) &= (00, 01) \\
\phi(Cro)((00, 10)) &= (00, 10) \\
\phi(Cro)((01, 02, 01, 02, \ldots)) &= (01) \\
\phi(Cro)((02, 01, 02, 01, \ldots)) &= (01) \\
\phi(Cro)((10)) &= (10) \\
\phi(Cro)((11, 01, 02, 01, 02, \ldots)) &= (11, 01) \\
\phi(Cro)((11, 10)) &= (11, 10) \\
\phi(Cro)((12, 02, 01, 02, 01, \ldots)) &= (11, 01)
\end{align*}
$$

The definition of an asynchronous abstraction is based on its trace semantics and follows along similar lines to that for the synchronous case [5]. We say an asynchronous abstraction is correct if its set of traces is within the abstracted traces of the original MVN. This definition of abstraction represents an under-approximation [] since not all of the behaviour of the original MVN is guaranteed to have been captured within the abstraction (we discuss the implications of this below).

Definition 9. Let $MV_1 = (G_1, Y_1, N_1, F_1)$ and $MV_2 = (G_2, Y_2, N_2, F_2)$ be two MVNs with the same structure, i.e. $G_1 = G_2$ and $N_1(g_i) = N_2(g_i)$, for all $g_i \in MV_1$. Let ϕ be an abstraction mapping from MV_2 to MV_1. Then we say that MV_1 asynchronously abstracts MV_2 under ϕ, denoted $MV_1 \triangleright_A MV_2$, if, and only if, $Tr^A(MV_1) \subseteq \phi(Tr^A(MV_2))$.

\[\]
As an abstraction example, consider the MVN $APL2$ defined in Figure 3 which has the same structure as $PL2$ (see Figure 1) but is a Boolean model. Then given the abstraction mapping

\[
\begin{array}{ccc|cc}
 CI & C \rightarrow & CI & C \rightarrow \\
 0 & 0 & 1 & 1 & \langle 00,01 \rangle & \langle 10 \rangle \\
 0 & 1 & 0 & 1 & \langle 00,10 \rangle & \langle 11,01 \rangle \\
 1 & 0 & 1 & 0 & \langle 01 \rangle & \langle 11 \rangle \\
 1 & 1 & 0 & 0 & \langle 00,10 \rangle & \langle 11,01 \rangle \\
\end{array}
\]

Figure 3: State transition tables defining $APL2$ and associated asynchronous trace semantics $Tr^A(APL2)$.

$\phi(C \rightarrow) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\}$ we can see that $Tr^A(APL2) \subseteq \phi(C \rightarrow)(Tr^A(PL2))$ holds and so $APL2$ is an abstraction of $PL2$, i.e. $APL2 \triangleleft_{A}^\phi PL2$ holds. Note that $APL2$ has two point attractors: 01 and 10 which correspond to the two attractors associated with $PL2$ (see Figure 2.(b)) and thus, $APL2$ can be seen to be a good approximation of the behaviour of $PL2$.

Recall that one of the original motivations for developing an abstraction theory was to aid the analysis of complex MVNs. It is therefore important to consider what properties of an asynchronous MVN can be inferred from an abstraction MVN. We consider reachability and the existence of attractors since these are the main properties that are considered when analysing an MVN.

Theorem 10. Let $MV_1 \triangleleft_{A}^\phi MV_2$ and let $S_1, S_2 \in S_{MV_1}$. If S_2 is reachable from S_1 in MV_1 then there must exist states $S'_1, S'_2 \in S_{MV_2}$ such that $\phi(S'_1) = S_1$, $\phi(S'_2) = S_2$, and S'_2 is reachable from S'_1 in MV_2.

Proof. Since S_2 is reachable from S_1 there must exist a trace $\sigma \in Tr^A(MV_1)$ which begins with state S_1 and which contains state S_2. From Definition 9, we know that $Tr^A(MV_1) \subseteq \phi(Tr^A(MV_2))$ must hold. Therefore there must exist a trace $\sigma' \in Tr^A(MV_2)$ such that $\phi(\sigma') = \sigma$. From this it is straightforward to see that there must exist the required states S'_1 and S'_2 in σ' such that $\phi(S'_1) = S_1$, $\phi(S'_2) = S_2$, and S'_2 is reachable from S'_1. \hfill \square

The above theorem indicates that inferring reachability properties from an abstraction is sound but not complete [13]. The implications of this can be summarised as follows: (i) If one state is reachable from another in an abstraction then a corresponding reachability property must hold in the original model; (ii) However, if one state is not reachable from another in an abstraction then a corresponding reachability property in the original MVN may or may not hold and more analysis will be required. This relates to the fact that our notion of abstraction represents an under-approximation [9, 24] of the original model. The alternative approach would be to use an over-approximation abstraction model [9, 24, 10] in which false positives can arise and need to be dealt with. It turns out that an over-approximation approach is not well suited to MVNs given that our goal is to find an abstraction model that is a well-defined MVN. To illustrate the potential problems, consider what happens if a point attractor is identified to a non-attractor state by an abstraction mapping. In this case no over-approximation abstraction can exist since such an MVN would need to contain a state that was both a point attractor and also had a successor state. Thus the approach taken here of using an under-approximation appears to be the appropriate approach to use.

Note that a consequence of the above is that all attractors in an abstraction must have corresponding attractors in the original MVN.
Corollary 11. If $MV_1 \prec_2^\phi MV_2$ then all attractors of MV_1 must represent attractors in MV_2.

Proof. Follows directly from the definition of an attractor and Theorem 10.

4 A Decision Procedure for Asynchronous Abstractions

Given we have now formulated a definition of an asynchronous abstraction we are now interested in defining a procedure for checking whether a proposed abstraction MV_1 is an asynchronous abstraction of an MVN MV_2. In the synchronous case the approach taken was to simply check that each trace $\sigma \in Tr^S(MV_1)$ was contained within the set of abstracted traces $\phi(Tr^S(MV_2))$. However, in the asynchronous case both sets of traces $Tr^A(MV_1)$ and $\phi(Tr^A(MV_2))$ may be infinite and so such a simple set inclusion check is not feasible. Instead we propose a decision procedure based on using the state graphs that summarise the behaviour of an asynchronous MVN. The idea is to consider all sets of states and associated edges that can be used to model an abstract state. We then iterate through these removing those state sets which can not be represented given the current allowable state sets. If at any point we no longer have any state sets remaining for a particular abstract state then we have shown the abstraction is not valid and we terminate the decision procedure. If, on the other hand, we reach a point at which no more state sets can be removed then we know the abstraction must be valid and we can again terminate the procedure.

In the sequel let MV_1 and MV_2 be MVNs with the same structure and let ϕ be an abstraction mapping from MV_2 to MV_1.

In order to define a decision procedure $\text{checkAsynAbs}(MV_1, MV_2, \phi)$ for checking if MV_1 is an asynchronous abstraction under ϕ of MV_2 we begin by formulating some preliminary concepts.

i) Representing abstract states: Let $S \in Y(MV_1)$ then we define

$$\phi^{-1}(S) = \{S' \mid S' \in Y(MV_2), \phi(S') = S\}$$

to be the set of all states in MV_2 that can represent the abstract state S.

ii) Set of identical consecutive states: For any state $S' \in Y(MV_2)$ we define the set $[S']^\phi$ of all consecutive reachable states from S' that have the same abstract state $\phi(S')$. Define $[S']^\phi = \bigcup_{i \in \mathbb{N}} [S'_i]^\phi$, where $[S'_i]^\phi$ is defined recursively: $[S'_0]^\phi = \{S'\}$ and

$$[S'_i]^\phi_{i+1} = \{S'_2 \mid S'_2 \in [S'_i]^\phi, \text{ } S'_2 \in next^{MV_2}(S'_1), \phi(S'_2) = \phi(S'_2)\}.$$

We now define the notion of a step term, an expression which is used to represent one possible way to model an abstract state using a set of original states. Such step terms will form the basis of our decision procedure.

Definition 12. Let $S \in Y(MV_1)$ and suppose $next^{MV_1}(S) = \{S_1, \ldots, S_m\}$. Then for each non-empty set of states $\Gamma \subseteq \phi^{-1}(S)$ we define the step term $st(S, \Gamma)$ by

$$st(S, \Gamma) = \{S : \Gamma : D(S_1), \ldots, D(S_m)\},$$

where $D(S_i) = \{S'_2 \mid S'_2 \in \Gamma, \text{ } S'_2 \in next^{MV_2}(\{S'_i\} \cup [S'_i]^\phi), \phi(S'_2) = S_i\}$, and $next^{MV_2}$ has been lifted from taking a single state as input to taking a set of states in the obvious way. Note that
the use of $[S_i']^\phi$ is needed in the above definition to take account of the merging of consecutive identical states that occurs in abstracted traces (see part ii) in Definition 8).

We say a step term $[S : \Gamma : D(S_1), \ldots, D(S_m)]$ is valid iff:

i) the states Γ used in a step term have the appropriate connections, i.e. $D(S_i) \neq \emptyset$, for $i = 1, \ldots, m$; and

ii) if S is a point attractor in $SG^A(MV_1)$ then it must be modelled by point attractors in $SG^A(MV_2)$ (discounting steps to identical abstracted states), i.e. if $next^{MV_1}(S) = \emptyset$ then for each $S' \in \Gamma$ we have $next^{MV_2}([S']^\phi) - [S']^\phi = \emptyset$.

We let $Step(S)$ denote the set of all valid step terms

$$Step(S) = \{st(S, \Gamma) \mid \Gamma \subseteq \phi^{-1}(S), st(S, \Gamma) \text{ is valid}\}.$$

Observe that each valid step term $st(S, \Gamma) \in Step(S)$ must correctly model in MV_2 the connections between $S \in Y(MV_1)$ and its corresponding next states $next^{MV_1}(S)$ in MV_1.

The proposed decision procedure is presented in Figure 4. It works by creating a family $C = \langle C(S) \subseteq Step(S) \mid S \in Y(MV_1) \rangle$ of sets of all valid step terms. It then repeatedly looks at each set of step terms $C(S)$, for each abstract state $S \in Y(MV_1)$, removing those that have next states that are not currently in the remaining stored step terms of C.

Algorithm checkAsynAbs(MV_1, MV_2, ϕ):

/** Initialise valid state terms **/
for each $S \in Y(MV_1)$ do $C(S) = Step(S)$
/** Iteratively check sets of step terms **/
repeat
 done:=true
 for each $S \in Y(MV_1)$ do
 for each $[S : \Gamma : D(S_1), \ldots, D(S_m)] \in C(S)$ do
 for $i := 1 \text{ to } m$ do
 if $st(S_i, D(S_i)) \notin C(S_i)$ then
 $C(S) = C(S) - \{[S : \Gamma : D(S_1), \ldots, D(S_m)]\}$
 done:=false
 if $C(S) = \emptyset$ then return false
 until (done = true)
return true

Figure 4: Decision procedure for checking asynchronous abstractions $MV_1 \ll_A^\phi MV_2$.

It is straightforward to show that the decision procedure must always terminate.

Theorem 13. The decision procedure $checkAsynAbs(MV_1, MV_2, \phi)$ always terminates.

Proof. This follows from that fact we can only ever begin with a finite family of finite sets of step terms, that no step terms can ever be added, and that we must remove at least on step term in order to continue to the next iteration. Therefore the algorithm either terminates when no step terms are removed or continues to iterate until we reach a point where one set $C(S)$ of step terms is empty, again resulting in termination of the algorithm.

The complexity of the decision procedure in the worst case, when MV_1 is not an asynchronous abstraction of MV_2, can be derived as follows. Assume MV_1 is a Boolean model which has n entities and k is an upper bound on the number of states in MV_2 that can be abstracted to a single state in MV_1, i.e. $k \geq |\phi^{-1}(S)|$, for all $S \in Y(MV_1)$. Note that k can be calculated from the abstraction mapping used and is not dependent on n. The three nested for loops in the decision procedure have an upper bound of $O(2^n \times 2^k \times n)$ where: 2^n is the number of states in MV_1; 2^k is an upper bound on the number of different sets of states that can be mapped to a given abstract state; and n represents the maximum number of states that can be connected to a given state. The outer repeat until loop will iterate round removing a single step term until one of the step term sets is empty. This gives a final upperbound of $O(2^{2(n+k)} \times n^2)$. In practice the decision procedure should perform much better than this. Note that for a given abstraction mapping, k can be seen as a fixed constant which does not increase as entities are added (providing the state of those entities is not abstracted).

Let $[S : \Gamma : D(S_1), \ldots, D(S_m)]$ be a valid step term, let $\alpha_1 \in \Gamma$ and $\alpha_2 \in D(S_i)$, for some $1 \leq i \leq m$. Then note that due to the way consecutive identical states are treated it may not directly hold that $\alpha_1 \xrightarrow{\text{Asy}} \alpha_2$ since $\alpha_2 \in \text{next}^{MV_2}(\{\alpha_1\} \cup [\alpha_1]^{\phi})$. We let $\overrightarrow{1} = \alpha_1 \xrightarrow{\text{Asy}} \alpha_1' \xrightarrow{\text{Asy}} \alpha_2$. This gives a final upperbound of $2^{(n+k)} \times n^2$. In practice the decision procedure should perform much better than this. Note that for a given abstraction mapping, k can be seen as a fixed constant which does not increase as entities are added (providing the state of those entities is not abstracted).

The following lemma considers how step terms can be chained together and is is needed to prove the main correctness result below.

Lemma 14. Let $C = \langle C(S) \subseteq \text{Step}(S) \mid S \in Y(MV_1) \rangle$ be a family of sets of valid step terms such that:

i) For each $S \in Y(MV_1)$ we have $C(S) \neq \emptyset$;

ii) The family C is closed under step terms, i.e. for each state $S \in Y(MV_1)$ and each step term $[S : \Gamma : D(S_1), \ldots, D(S_m)] \in C(S)$ we have $st(S_i, D(S_i)) \in C(S_i)$, for $1 \leq i \leq m$.

Then every path\(^2\) $\gamma = \gamma_1 \xrightarrow{\text{Asy}} \ldots \xrightarrow{\text{Asy}} \gamma_p$ in the abstraction state graph $SG^A(MV_1)$ must have a corresponding path $\alpha = \alpha_1 \xrightarrow{\text{Asy}} \ldots \xrightarrow{\text{Asy}} \alpha_r$, $r \geq p$, in the original state graph $SG^A(MV_2)$ such that $\phi(\alpha) = \gamma$.

Proof.

Let $\gamma = \gamma_1 \xrightarrow{\text{Asy}} \ldots \xrightarrow{\text{Asy}} \gamma_p$ be a path in the state graph $SG^A(MV_1)$. Then by assumptions i) and ii) it is straightforward to see there must exist a (not necessarily unique) chain of step terms

$$[\gamma_i : \Gamma_i : \ldots, D(\gamma_{i+1}), \ldots] \in C(\gamma_i), \quad st(\gamma_p, \Gamma_p) \in C(\gamma_p)$$

for $1 \leq i < p$, such that for $j = 2, \ldots, p$ we have $\Gamma_j = D(\gamma_j)$.

We now prove that for any $\alpha_p \in \Gamma_p$ there must exist $\alpha_i \in \Gamma_i$, for $1 \leq i < p$, such that $\alpha = \alpha_1 \xrightarrow{\text{Asy}} \ldots \xrightarrow{\text{Asy}} \alpha_{p-1} \xrightarrow{\text{Asy}} \alpha_p$ is a path in $SG^A(MV_2)$ with $\phi(\alpha) = \gamma$. We prove this using induction on $p \in \mathbb{N}$, $p \geq 2$ as follows.

1) **Induction Base.** Let $p = 2$ and suppose we have a path $\gamma_1 \xrightarrow{\text{Asy}} \gamma_2$. Then we know there must exist step terms $[\gamma_1 : \Gamma_1 : \ldots, D(\gamma_2), \ldots] \in C(\gamma_1)$ and $st(\gamma_2, D(\gamma_2)) \in C(\gamma_2)$ (as explained above). Clearly by the definition of step terms we know that for any $\alpha_2 \in D(\gamma_2)$ there must exist

\(^2\)We note that a path differs from a trace in that a trace represents a complete run of an MVN whereas a path is simply a walk through an MVN’s state graph.
\[\alpha_1 \in \Gamma_1 \text{ such that } \alpha_1 \xrightarrow{Asy} \alpha_2 \text{ and } \]
\[\phi(\alpha_1 \xrightarrow{Asy} \alpha_2) = \gamma_1 \xrightarrow{Asy} \gamma_2. \]

2) \textit{Induction Step.} Let \(p = q + 1 \), for some \(q \in \mathbb{N}, q \geq 2 \). Suppose we have a path \(\gamma = \gamma_1 \xrightarrow{Asy} \ldots \xrightarrow{Asy} \gamma_q \xrightarrow{Asy} \gamma_{q+1} \). Then we know there must exist step terms
\[[\gamma_1 : \Gamma_1 : \ldots, D(\gamma_2), \ldots] \in C(\gamma_1), \quad [\gamma_i : D(\gamma_i) : \ldots, D(\gamma_{i+1}), \ldots] \in C(\gamma_i), \]
\[st(\gamma_{q+1}, D(\gamma_{q+1})) \in C(\gamma_{q+1}), \]
for \(2 \leq i \leq q \) (as explained above). Then by the induction hypothesis we know for each \(\alpha_q \in D(\gamma_q) \) there must exist \(\alpha_i \in \Gamma_i \), for \(1 \leq i < q \), such that \(\alpha_1 \xrightarrow{Asy} \ldots \xrightarrow{Asy} \alpha_{q-1} \xrightarrow{Asy} \alpha_q \) is a path in \(SG^A(MV_2) \) with \(\phi(\alpha_1 \xrightarrow{Asy} \ldots \xrightarrow{Asy} \alpha_{q-1} \xrightarrow{Asy} \alpha_q) = \gamma_1 \xrightarrow{Asy} \ldots \xrightarrow{Asy} \gamma_q \). By the definition of step terms it follows that for any \(\alpha_{q+1} \in D(\gamma_{q+1}) \) there must exist \(\alpha_q \in \Gamma_q \) such that \(\alpha_q \xrightarrow{Asy} \alpha_{q+1} \).
Combining this with the induction hypothesis given above shows the existence of the required path in \(SG^A(MV_2) \).

It now remains to show that the decision procedure \(\text{checkAsynAbs}(MV_1, MV_2, \phi) \) correctly checks for asynchronous abstractions.

\textbf{Theorem 15.} \(\text{checkAsynAbs}(MV_1, MV_2, \phi) \) returns \textit{true} if, and only if, \(MV_1 \xrightarrow{\phi} MV_2 \).

\textbf{Proof.}
\textit{Part 1) \Rightarrow} Suppose \(\text{checkAsynAbs}(MV_1, MV_2, \phi) \) returns \textit{true}. By inspecting the decision procedure we can see this means that a family \(\{C(S) \subseteq \text{Step}(S) \mid S \in Y(MV_1)\} \) of non–empty sets of valid step terms must have been found which is closed under step terms. Consider any abstract trace \(\sigma \in Tr^A(MV_1) \); then by Lemma 14 and since any trace can be interpreted as a path in \(SG^A(MV_1) \) we have that there must exist a path \(\alpha \) in \(SG^A(MV_2) \) such that \(\phi(\alpha) = \sigma \). It is straightforward to see that \(\alpha \) must be a well–defined trace for \(MV_2 \), i.e. \(\alpha \in Tr^A(MV_2) \), by the definition of \textit{valid} step term. This shows that \(Tr^A(MV_1) \subseteq \phi(Tr^A(MV_2)) \) and so by Definition 9 we have \(MV_1 \xrightarrow{\phi} MV_2 \).

\textit{Part 2) \Leftarrow} Suppose \(MV_1 \xrightarrow{\phi} MV_2 \) then by Definition 9 we know
\[Tr^A(MV_1) \subseteq \phi(Tr^A(MV_2)) \]
Then we show that there must exist a family of sets of valid step terms which are closed under step term inclusion and thus that \(\text{checkAsynAbs}(MV_1, MV_2, \phi) \) must terminate returning \textit{true}.

Let \(X \subseteq Tr^A(MV_2) \) be the set of traces that abstractly correspond to \(Tr^A(MV_1) \):
\[X = \{ \sigma \mid \sigma' \in Tr^A(MV_2), \quad \exists \sigma \in Tr^A(MV_1). \phi(\sigma') = \sigma \} \]
For each \(S \in Y(MV_1) \), let \(X(S) \) denote the set of all states that abstract to \(S \) which occur at the start of a trace in \(X \):
\[X(S) = \{ \sigma'(1) \mid \sigma' \in X, \quad \phi(\sigma'(1)) = S \} \]
where \(\sigma'(1) \) represents the first state of trace \(\sigma' \). Let \(next^{MV_1}(S) = \{S_1, \ldots, S_m\} \), then using Definition 12 we can define the step term
\[st(S, X(S)) = [S : X(S) : D(S_1), \ldots, D(S_m)] \]
Clearly, \(st(S, X(S)) \) must be valid by (1) above. We can now recursively define a set of step terms closed under step term inclusion from \(st(S, X(S)) \) as follows.

Define \(H(X(S)) = \bigcup_{i \in \mathbb{N}} H(X(S))_i \), where \(H(X(S))_i \) is defined recursively:

\[
H(X(S))_0 = \{ st(S, X(S)) \}
\]

and

\[
H(X(S))_{i+1} = \{ st(V_j, D(V_j)) \mid [V : \Gamma : D(V_1), \ldots, D(V_r)] \in H(X(S))_i, \ V_j \in \{ V_1, \ldots, V_r \} \}.
\]

Clearly, the set \(H(X(S)) \) is closed under step term inclusion by construction. Also note that it can only contain valid step terms; this follows from (1) above and the fact that if \(st(S, \Gamma) \) is a valid step term then any new step term \(st(S, \Gamma \cup \{ S' \}) \) formed by adding an additional state \(S' \in \phi^{-1}(S) \) must also be valid. It therefore follows that for each \(S \in Y(MV_1) \) we know that each step term \(st(S_i, \Gamma) \in H(X(S)) \) must occur in the initial family \(C \) of sets of step terms used in the decision procedure, i.e. \(st(S, \Gamma) \in C(S) \). Since none of these step terms can be removed from \(C \) by the closure property it follows that the decision procedure \(\text{checkAsynAbs}(MV_1, MV_2, \phi) \) must terminate returning \(true \).

5 Case Study: The Regulation of Tryptophan Biosynthesis

In this section we present a detailed case study which illustrates the abstraction techniques developed in the previous sections. Our case study is based on identifying abstractions for a published MVN model of the regulatory system used to control the biosynthesis of tryptophan in \(E. coli \) [30]. Tryptophan is an amino acid which is essential for the development of \(E. coli \). However, the synthesis of tryptophan is resource intensive and for this reason is carefully controlled to ensure it is only synthesised when no external source is available. The regulatory network that controls the biosynthesis of tryptophan by \(E. coli \) has been extensively studied (see for example [29, 27]).

![Figure 5: An MVN model MTRP of the regulatory mechanism for the biosynthesis of tryptophan in E. coli (from [30]). The state transition table for TrpExt has been omitted as this is a simple input entity. Note that the state transition tables use a shorthand notation where an entity is allowed to be in any of the states listed for it in a particular row.](image-url)
Consider the MVN model \textit{MTRP} for tryptophan biosynthesis presented in Figure 5 which is taken from [30]. It consists of four regulatory entities: \textit{TrpE} – a Boolean input entity indicating the presence of the activated enzyme required for synthesising tryptophan; \textit{TrpR} – a Boolean entity indicating if the repressor gene for tryptophan production is active; \textit{TrpExt} – a ternary entity indicating the level of tryptophan in the external medium; and \textit{Trp} – a ternary entity indicating the level of tryptophan within the bacteria. Note the above entity order is used when displaying global states for \textit{MTRP}. We can see from the model that the presence of tryptophan in the external medium \textit{TrpExt} directly affects the level of tryptophan within the bacteria \textit{Trp} and that the activated enzyme \textit{TrpExt} is required to synthesise tryptophan. The presence of tryptophan within the bacteria deactivates the enzyme \textit{TrpE} and at higher-levels also activates the repressor \textit{TrpR} which then acts to inhibit the production of the enzyme \textit{TrpE}.

The state space for the \textit{MTRP} consists of 36 global states and for this reason we do not reproduce its state graph here. Instead we simply note that the asynchronous state graph for \textit{MTRP} comprises three disjoint graphs based on the following three attractors: 0000 \rightarrow_{\text{Asy}} 1000 \rightarrow_{\text{Asy}} 1001 \rightarrow_{\text{Asy}} 0001 \rightarrow_{\text{Asy}} 0000; 0011; and 0122. To identify abstractions for \textit{MTRP} we begin by defining appropriate state mappings for the non-Boolean entities \textit{TrpExt} and \textit{Trp} as follows:

\[
\phi(\text{Trp}) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\}, \quad \phi(\text{TrpExt}) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\}.
\]

These can then be combined into an abstraction mapping

\[
\phi = \langle I_{\text{TrpE}}, I_{\text{TrpR}}, \phi(\text{TrpExt}), \phi(\text{Trp}) \rangle.
\]

Following the approach presented in [5], we first apply this abstraction mapping to \textit{MTRP} to produce a set \(\phi(MTRP)\) of candidate abstraction models. By analysing \(\phi(MTRP)\) we are able to establish that there are 8 possible candidate abstraction models (we have 4 choices for next-state of \(\text{TrpR}\) and 2 choices for \(\text{Trp}\)). After investigating these candidate models we were able to identify one valid asynchronous abstraction \(\text{ATRP}\) (which is presented in Figure 6) for \textit{MTRP} under \(\phi\) using the decision procedure \texttt{checkAsynAbs}(\textit{ATRP}, \textit{MTRP}, \phi) . Note that since \(T\text{r}^A(\text{ATRP})\) and \(\phi(T\text{r}^A(\text{MTRP}))\) are in fact finite trace sets in this case we were able to verify the result \(\text{ATRP} \preceq_A \text{MTRP}\), by checking that \(T\text{r}^A(\text{ATRP}) \subseteq \phi(T\text{r}^A(\text{MTRP}))\) holds.

\[
\begin{array}{cccc}
\text{Trp} & [\text{TrpR}] \\
0,1 & 0
\end{array}
\]

\[
\begin{array}{cccc}
\text{TrpE} & \text{TrpExt} & \text{Trp} & [\text{Trp}] \\
0 & 0 & 0,1 & 0 \\
0 & 1 & 0,1 & 1 \\
1 & 0,1 & 0,1 & 1
\end{array}
\]

\[
\begin{array}{cccc}
\text{Trp} & \text{TrpR} & [\text{TrpExt}] \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0,1 & 0
\end{array}
\]

Figure 6: The asynchronous abstraction \textit{ATRP} identified for \textit{MTRP} under the state mappings \(\phi(\text{Trp}) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\}\) and \(\phi(\text{TrpExt}) = \{0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 1\}\).

The state graph for \textit{ATRP} consists of two disjoint graphs and has two attractors: 0000 \rightarrow_{\text{Asy}} 1000 \rightarrow_{\text{Asy}} 1001 \rightarrow_{\text{Asy}} 0001 \rightarrow_{\text{Asy}} 0000; 0011. It therefore successfully captures two of the three attractors present in \textit{MTRP}.

14
6 Conclusions

In this paper we have developed an abstraction theory for asynchronous MVNs based on extending the ideas developed for synchronous MVNs [5] and defined what it means for an MVN to be correctly abstracted by a simpler MVN with the same network structure but smaller state space. The abstraction approach used is based on an under-approximation approach [9, 24] in which an abstraction captures a subset of the behaviour of the original MVN. We showed that this approach allows positive reachability properties of an MVN to be inferred from a corresponding asynchronous abstraction and that all attractors of an asynchronous abstraction correspond to attractors in the original MVN. An alternative approach would be to use an over-approximation approach [9, 24, 10] in which false positives can arise. However, the construction of an abstraction model which over-approximates an MVN’s behaviour appears to be problematic if we wish to remain within the MVN framework (see Section 3 for a discussion of this).

Directly checking asynchronous abstractions turned out to be problematic given that an asynchronous MVN may have an infinite set of traces which makes it infeasible to directly check trace inclusion. To address this we developed a decision procedure for checking asynchronous abstractions based on the finite state graph of an asynchronous MVN. The decision procedure used step terms to denote possible ways to use sets of concrete states to represent abstract states and worked by iteratively pruning the set of step terms until either a consistent abstract representation has been found or the set of remaining step terms is too small to make it feasible to continue. Importantly, we provided a detailed proof that showed the decision procedure worked correctly. Note that as it stands, the decision procedure is inefficient; work is on going to refine this procedure and to use it as a basis of a tool for abstraction checking. Such a tool will provide the support needed to carry out more complex case studies, for example supporting the work currently underway to investigate abstractions for the relatively complex MVN model of the carbon starvation response in *E. coli* presented in [3].

We illustrated the abstraction theory and techniques developed by considering a detailed case study based on identifying a Boolean abstraction for an asynchronous MVN model of the regulatory system used to control the biosynthesis of tryptophan in *E. coli*. The abstraction found proved to faithfully represent the behaviour of the original MVN and in particular, captured two of the three attractors known to exist in the original MVN. The case study illustrates the potential for the abstraction theory presented and in particular, how it allows the balance between the level of abstraction used and the tractability of analysis to be explored.

An alternative approach for abstracting MVNs is to reduce the number of regulatory entities in an MVN while ensuring the preservation of key properties (see [21, 37, 22]). This approach seems to be complimentary to the one developed here and we are currently investigating combining these ideas. Another possible abstraction approach would be to make use of results on modelling MVNs using Petri nets [11, 3, 4, 8] and to then apply Petri net abstraction techniques (see for example [31, 19, 38]). Such an approach appears promising from an analysis point of view but problematic in that the resulting Petri net abstraction may not be interpretable as an MVN and so force the modeller to explicitly use a different modelling formalism.

One interesting area for future work is to investigate automatically constructing abstractions for a given MVN and abstraction mapping. Some initial work on restricting the search space for such abstractions can be found in [5] but more work is needed here. One idea is to consider developing refinement techniques similar to those of CEGAR (Counterexample Guided Abstraction Refinement) [10] and other abstraction refinement techniques [24]. Closely linked to this idea is the notion of a maximal abstraction, that is an abstraction which captures the largest possible behaviour of the original abstraction with respect to all other possible abstractions for the given abstraction mapping. In future work we intend to investigate developing such a notion and...
in particular, consider how to automate the construction of such maximal abstractions.

Acknowledgments. We would like to thank Richard Banks and Maciej Koutny for their advice and support during the preparation of this paper. We would also like to thank the anonymous referees for their very helpful comments and suggestions.

References

